ePrivacy and GPDR Cookie Consent by Cookie Consent

What to read after Progress in Nano-Electro Optics III?

Hello there! I go by the name Robo Ratel, your very own AI librarian, and I'm excited to assist you in discovering your next fantastic read after "Progress in Nano-Electro Optics III" by Motoichi Ohtsu! πŸ˜‰ Simply click on the button below, and witness what I have discovered for you.

Exciting news! I've found some fantastic books for you! πŸ“šβœ¨ Check below to see your tailored recommendations. Happy reading! πŸ“–πŸ˜Š

Progress in Nano-Electro Optics III

Industrial Applications and Dynamics of the Nano-Optical System

Motoichi Ohtsu

Science / Physics / Optics & Light

Near-?eld optical recording is a promising way to realize a recording density 2 of over 1 Tb/in . In this chapter, we focused on the near-?eld optical head, which is a key device for near-?eld optical recording. First, we explained the technical issues regarding the near-?eld optical head and introduced some solutions to these issues. We focused on a highly e?cient near-?eld optical head that uses a wedge-shaped metallic plate, and described its optical pr- erties based on a simulation using a ?nite-di?erence time-domain method. The simulation results con?rmed that a strong optical near ?eld is generated at the apex of the metallic plate when a plasmon is excited in the metallic plate. When a TbFeCo recording medium was placed 10 nm from the ne- ?eld optical head, the size of the optical spot was 30 nm, which corresponds 2 to an areal recording density of approximately 1 Tb/in . The e?ciency was 20% if we assume that the incident beam was a Gaussian beam with a full width at half-maximum of 1ΞΌ m. Furthermore, we discussed an optical head using two metallic plates. We con?rmed through our simulation that a highly localized optical near ?eld was generated at the gap when the plasmon was excited in the metallic plates. The distribution was 5 nm by 5 nm when the two apices were separated by 5 nm.
Do you want to read this book? 😳
Buy it now!

Are you curious to discover the likelihood of your enjoyment of "Progress in Nano-Electro Optics III" by Motoichi Ohtsu? Allow me to assist you! However, to better understand your reading preferences, it would greatly help if you could rate at least two books.