ePrivacy and GPDR Cookie Consent by Cookie Consent

What to read after Multilayer Magnetic Nanostructures?

Hello there! I go by the name Robo Ratel, your very own AI librarian, and I'm excited to assist you in discovering your next fantastic read after "Multilayer Magnetic Nanostructures" by Alexander S. Sigov! 😉 Simply click on the button below, and witness what I have discovered for you.

Exciting news! I've found some fantastic books for you! 📚✨ Check below to see your tailored recommendations. Happy reading! 📖😊

Multilayer Magnetic Nanostructures

Properties and Applications

Alexander S. Sigov

Science / Physics / Condensed Matter

This book presents relevant issues for the development of computer technology in general and civil aviation in particular, related to the promising task of developing magnetoresistive memory. In modern conditions of constantly increasing air traffic intensity, it is necessary to use both on board the aircraft and in ground services computing devices that guarantee the required level of flight safety. The book shows that in the multilayer ferromagnet-antiferromagnet system, the behavior of magnetic parameters in layers of nanometer thickness is largely determined by frustrations. The monograph provides not only a complete analysis of the current state of magnetic nanostructures but also predicts new types generated by exchange interaction frustrations. The phase diagrams "layer thickness (layers)—roughness" of a thin ferromagnetic film on an antiferromagnetic substrate and a spin-valve system ferromagnet-antiferromagnet-ferromagnet are constructed taking into account the energy of single-ion anisotropy. The book presents experimental results that confirm the existence of a new type of domain walls. It is shown that the detected domain walls appear exactly at the locations of the atomic steps, and their thickness increases in proportion to the film thickness with a proportionality coefficient of the order of one. Special attention using mathematical models is placed for optimal orientation of spins at a smooth interface in the case of a compensated cross section of an antiferromagnet and an uncompensated cross section. The constructed phase diagrams and models are compared with the experiments. It is thus concluded that scanning tunneling microscopy (STM) makes it possible to study domain walls generated by frustration on the surface of the structure.


Do you want to read this book? 😳
Buy it now!

Are you curious to discover the likelihood of your enjoyment of "Multilayer Magnetic Nanostructures" by Alexander S. Sigov? Allow me to assist you! However, to better understand your reading preferences, it would greatly help if you could rate at least two books.