ePrivacy and GPDR Cookie Consent by Cookie Consent

What to read after Introduction to Quantum Mechanics with Applications to Chemistry?

Hello there! I go by the name Robo Ratel, your very own AI librarian, and I'm excited to assist you in discovering your next fantastic read after "Introduction to Quantum Mechanics with Applications to Chemistry" by E. Bright Wilson! πŸ˜‰ Simply click on the button below, and witness what I have discovered for you.

Exciting news! I've found some fantastic books for you! πŸ“šβœ¨ Check below to see your tailored recommendations. Happy reading! πŸ“–πŸ˜Š

Introduction to Quantum Mechanics with Applications to Chemistry

E. Bright Wilson , Linus Pauling

Science / Physics / General

When this classic text was first published in 1935, it fulfilled the goal of its authors "to produce a textbook of practical quantum mechanics for the chemist, the experimental physicist, and the beginning student of theoretical physics." Although many who are teachers today once worked with the book as students, the text is still as valuable for the same undergraduate audience.
Two-time Nobel Prize winner Linus Pauling, Research Professor at the Linus Pauling Institute of Science and Medicine, Palo Alto, California, and E. Bright Wilson, Jr., Professor Emeritus of Chemistry at Harvard University, provide a readily understandable study of "wave mechanics," discussing the Schrodinger wave equation and the problems which can be solved with it. Extensive knowledge of mathematics is not required, although the student must have a grasp of elementary mathematics through the calculus. Pauling and Wilson begin with a survey of classical mechanics, including Newton's equations of motion in the Lagrangian form, and then move on to the "old" quantum theory, developed through the work of Planck, Einstein and Bohr. This analysis leads to the heart of the book ― an explanation of quantum mechanics which, as Schrodinger formulated it, "involves the renunciation of the hope of describing in exact detail the behavior of a system." Physics had created a new realm in which classical, Newtonian certainties were replaced by probabilities ― a change which Heisenberg's uncertainty principle (described in this book) subsequently reinforced.
With clarity and precision, the authors guide the student from topic to topic, covering such subjects as the wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, the structure of simple and complex molecules, Van der Waals forces, and systems in thermodynamic equilibrium. To insure that the student can follow the mathematical derivations, Pauling and Wilson avoid the "temptation to condense the various discussions into shorter and perhaps more elegant forms" appropriate for a more advanced audience. Introduction to Quantum Mechanics is a perfect vehicle for demonstrating the practical application of quantum mechanics to a broad spectrum of chemical and physical problems.

Do you want to read this book? 😳
Buy it now!

Are you curious to discover the likelihood of your enjoyment of "Introduction to Quantum Mechanics with Applications to Chemistry" by E. Bright Wilson? Allow me to assist you! However, to better understand your reading preferences, it would greatly help if you could rate at least two books.