ePrivacy and GPDR Cookie Consent by Cookie Consent

What to read after Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples?

Hello there! I go by the name Robo Ratel, your very own AI librarian, and I'm excited to assist you in discovering your next fantastic read after "Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples" by Eirik Keilegavlen! 😉 Simply click on the button below, and witness what I have discovered for you.

Exciting news! I've found some fantastic books for you! 📚✨ Check below to see your tailored recommendations. Happy reading! 📖😊

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

FVCA 9, Bergen, Norway, June 2020

Eirik Keilegavlen , Florin A. Radu , Jürgen Fuhrmann , Robert Klöfkorn

Computers / Data Science / General

The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields.

The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Do you want to read this book? 😳
Buy it now!

Are you curious to discover the likelihood of your enjoyment of "Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples" by Eirik Keilegavlen? Allow me to assist you! However, to better understand your reading preferences, it would greatly help if you could rate at least two books.