ePrivacy and GPDR Cookie Consent by Cookie Consent

What to read after DATA SCIENCE WORKSHOP: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI?

Hello there! I go by the name Robo Ratel, your very own AI librarian, and I'm excited to assist you in discovering your next fantastic read after "DATA SCIENCE WORKSHOP: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI" by Vivian Siahaan! 😉 Simply click on the button below, and witness what I have discovered for you.

Exciting news! I've found some fantastic books for you! 📚✨ Check below to see your tailored recommendations. Happy reading! 📖😊

DATA SCIENCE WORKSHOP: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI

Vivian Siahaan

Computers / Data Science / Neural Networks

In the "Data Science Workshop: Alzheimer's Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI," the project aimed to address the critical task of Alzheimer's disease prediction. The journey began with a comprehensive data exploration phase, involving the analysis of a dataset containing various features related to brain scans and demographics of patients. This initial step was crucial in understanding the data's characteristics, identifying missing values, and gaining insights into potential patterns that could aid in diagnosis.


Upon understanding the dataset, the categorical features' distributions were meticulously examined. The project expertly employed pie charts, bar plots, and stacked bar plots to visualize the distribution of categorical variables like "Group," "M/F," "MMSE," "CDR," and "age_group." These visualizations facilitated a clear understanding of the demographic and clinical characteristics of the patients, highlighting key factors contributing to Alzheimer's disease. The analysis revealed significant patterns, such as the prevalence of Alzheimer's in different age groups, gender-based distribution, and cognitive performance variations.


Moving ahead, the project ventured into the realm of predictive modeling. Employing machine learning techniques, the team embarked on a journey to develop models capable of predicting Alzheimer's disease with high accuracy. The focus was on employing various machine learning algorithms, including K-Nearest Neighbors (KNN), Decision Trees, Random Forests, Gradient Boosting, Light Gradient Boosting, Multi-Layer Perceptron, and Extreme Gradient Boosting. Grid search was applied to tune hyperparameters, optimizing the models' performance. The evaluation process was meticulous, utilizing a range of metrics such as accuracy, precision, recall, F1-score, and confusion matrices. This intricate analysis ensured a comprehensive assessment of each model's ability to predict Alzheimer's cases accurately.


The project further delved into deep learning methodologies to enhance predictive capabilities. An arsenal of deep learning architectures, including Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM) networks, Feedforward Neural Networks (FNN), and Recurrent Neural Networks (RNN), were employed. These models leveraged the intricate relationships present in the data to make refined predictions. The evaluation extended to ROC curves and AUC scores, providing insights into the models' ability to differentiate between true positive and false positive rates.


The project also showcased an innovative Python GUI built using PyQt. This graphical interface provided a user-friendly platform to input data and visualize the predictions. The GUI's interactive nature allowed users to explore model outcomes and predictions while seamlessly navigating through different input options.


In conclusion, the "Data Science Workshop: Alzheimer's Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI" was a comprehensive endeavor that involved meticulous data exploration, distribution analysis of categorical features, and extensive model development and evaluation. It skillfully navigated through machine learning and deep learning techniques, deploying a variety of algorithms to predict Alzheimer's disease. The focus on diverse metrics ensured a holistic assessment of the models' performance, while the innovative GUI offered an intuitive platform to engage with predictions interactively. This project stands as a testament to the power of data science in tackling complex healthcare challenges.

Do you want to read this book? 😳
Buy it now!

Are you curious to discover the likelihood of your enjoyment of "DATA SCIENCE WORKSHOP: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI" by Vivian Siahaan? Allow me to assist you! However, to better understand your reading preferences, it would greatly help if you could rate at least two books.