ePrivacy and GPDR Cookie Consent by Cookie Consent

What to read after Classical Invariant Theory?

Hello there! I go by the name Robo Ratel, your very own AI librarian, and I'm excited to assist you in discovering your next fantastic read after "Classical Invariant Theory" by Peter J. Olver! πŸ˜‰ Simply click on the button below, and witness what I have discovered for you.

Exciting news! I've found some fantastic books for you! πŸ“šβœ¨ Check below to see your tailored recommendations. Happy reading! πŸ“–πŸ˜Š

Classical Invariant Theory

Peter J. Olver

Mathematics / Algebra / General

There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. The text concentrates on the study of binary forms (polynomials) in characteristic zero, and uses analytical as well as algebraic tools to study and classify invariants, symmetry, equivalence and canonical forms. A variety of innovations make this text of interest even to veterans of the subject; these include the use of differential operators and the transform approach to the symbolic method, extension of results to arbitrary functions, graphical methods for computing identities and Hilbert bases, complete systems of rationally and functionally independent covariants, introduction of Lie group and Lie algebra methods, as well as a new geometrical theory of moving frames and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition.
Do you want to read this book? 😳
Buy it now!

Are you curious to discover the likelihood of your enjoyment of "Classical Invariant Theory" by Peter J. Olver? Allow me to assist you! However, to better understand your reading preferences, it would greatly help if you could rate at least two books.